3 research outputs found

    Approximate Membership Function Shapes of Solutions to Intuitionistic Fuzzy Transportation Problems

    Get PDF
    In this paper, proposing a mathematical model with disjunctive constraint system, and providing approximate membership function shapes to the optimal values of the decision variables, we improve the solution approach to transportation problems with trapezoidal fuzzy parameters. We further extend the approach to solving transportation problems with intuitionistic fuzzy parameters; and compare the membership function shapes of the fuzzy solutions obtained by our approach to the fuzzy solutions to full fuzzy transportation problems yielded by approaches found in the literature

    Crisp-linear-and Models in Fuzzy Multiple Objective Linear Fractional Programming

    Get PDF
    The aim of this paper is to introduce two crisp linear models to solve fuzzy multiple objective linear fractional programming problems. In a novel manner we construct two piece-wise linear membership functions to describe the fuzzy goal linked to a linear fractional objective. They are related to the numerator and denominator of the fractional objective function; and we show that using the fuzzy-and operator to aggregate them a convenient description of the original fractional fuzzy goal is obtained. Further on, with the help of the fuzzy-and operator we aggregate all fuzzy goals and constraints, formulate a crisp linear model, and use it to provide a solution to the initial fuzzy multiple objective linear fractional programming problem. The second model embeds in distinct ways the positive and negative information, the desires and restrictions respectively; and aggregates in a bipolar manner the goals and constraints. The main advantage of using the new models lies in the fact that they are linear, and can generate distinct solutions to the multiple objective problem by varying the thresholds and tolerance limits imposed on the fuzzy goals

    Computation Results of Finding All Efficient Points in Multiobjective Combinatorial Optimization

    Get PDF
    The number of efficient points in criteria space of multiple objective combinatorial optimization problems is considered in this paper. It is concluded that under certain assumptions, that number grows polynomially although the number of Pareto optimal solutions grows exponentially with the problem size. In order to perform experiments, an original algorithm for obtaining all efficient points was formulated and implemented for three classical multiobjective combinatorial optimization problems. Experimental results with the shortest path problem, the Steiner tree problem on graphs and the traveling salesman problem show that the number of efficient points is much lower than a polynomial upper bound
    corecore